JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY HYDERABAD

B. Tech III Year I Semester Examinations, January/February - 2023 COMPUTER GRAPHICS (Common to CSE, IT, CSIT, CSE(AIML), CSE(DS))

Time: 3 Hours
Max. Marks: 75
Note: i) Question paper consists of Part A, Part B.
ii) Part A is compulsory, which carries 25 marks. In Part A, Answer all questions.
iii) In Part B, Answer any one question from each unit. Each question carries 10 marks and may have a, b as sub questions.

> PART - A
(25 Marks)
1.a) Explain applications for large screen displays.
b) Write a short note on video-display device.
c) What is viewing functions?
d) Explain the 2 D transformation matrix for Translation.
e) What is the role of parametric functions in curve generation?
f) Write an algorithm for the generation of B-spline?[3]
g) Derive the transformation matrix for rotation about y-axis in 3D.
h) Derive the matrix form for the Translation operation in 3-D graphics.
i) Write about depth-sort algorithm
j) What are the steps in desigi, Of animation sequence?
PART - B
(50 Marks)
2.a) What are the teps involved in DDA algorithm for line drawing.
b) Write a short note on boundary-fill algorithm.

OR

3.a) Briefly explain about mid-point ellipse algorithms with example.
b) Discuss about raster-scan systems.
4.a) Describe the Cohen-Sutherland algorithm.
b) What is reflection? Discuss with example?

OR

5.a) Explain the stages in viewing pipeline in 2-D graphics.
b) Derive mathematically the transformation that rotates an object point $0{ }^{0}$ anti-clockwise about the origin. What the matrix representation for this rotation.
6.a) Write a short note on Hermite curve.
b) Discuss about quadric surfaces.

OR

7.a) Write a short note on Bezier curve.
b) Discuss about polygon rendering methods.
8.a) Derive the matrix form for Rotation in 3-D graphics.
b) Explain about the approaches followed for clipping in 3-D space.

OR
9.a) Briefly explain about 3-D composite transformations.
b) Write a short note on shear transformations in 3-D.
10.a) Discuss about the graphical languages followed to achieve animation.
b) Explain in detail about depth-buffer algorithm.

OR
11.a) Describe linear list notation of animation languages.
b) Write a short note on BSP-trees.

